Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks

نویسندگان

  • Zhenyou Zhang
  • Yi Wang
  • Kesheng Wang
چکیده

This paper proposes a new approach for rotating machinery which integrates wavelet transform (WT), principal component analysis (PCA), and artificial neural networks (ANN) to classify the fault and predict the conditions of components, equipment, and machines. The standard deviation of wavelet coefficients are extracted from processed historical signals of manufacturing equipment as features. Then, the features are analyzed by PCA and several new principal features obtained from original features can be used as inputs to train ANN. After training, the conditions and degradations of components and machines can be predicted, and the fault of them can be classified if it exists, by the trained ANN using the same kinds of principal features extracted from real time signals. A case study is used to evaluate the proposed method and the result indicates its higher efficiency and effectiveness comparing to traditional methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Using PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Intelligent Methods for Condition Diagnosis of Plant Machinery

In the case of condition diagnosis of the plant machinery, particularly rotating machinery, the utilization of vibration signals is effective in the detection of faults and the discrimination of fault type, because the signals carry dynamic information about the machine state. Condition diagnosis depends largely on the feature analysis of vibration signals, so it is important that the feature o...

متن کامل

Recent Research Results on Intelligent Methods for Conditon Diagnosis of Rotating Machinery

This paper reports several intelligent diagnostic approaches for rotating machinery based on artificial intelligence methods and feature extraction of vibration signals. That is: the diagnosis method based on wavelet transform, rough sets and neural network; the diagnosis method based on sequential fuzzy inference; diagnosis approach by possibility theory and certainty factor model; the diagnos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013